El sistema decimal es un sistema de numeración en el que las cantidades se representan utilizando como base el número diez, por lo que se compone de diez cifras diferentes: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve (9). Este conjunto de símbolos se denomina números árabes, y es de origen indio.
Es el sistema de numeración usado habitualmente en todo el mundo (excepto ciertas culturas) y en todas las áreas que requieren de un sistema de numeración. Sin embargo hay ciertas técnicas, como por ejemplo en la informática, donde se utilizan sistemas de numeración adaptados al método de trabajo como el binario o el hexadecimal. También pueden existir en algunos idiomas vestigios del uso de otros sistemas de numeración, como el quinario, el duodecimal y el vigesimal. Por ejemplo, cuando se cuentan artículos por docenas, o cuando se emplean palabras especiales para designar ciertos números (en francés, por ejemplo, el número 80 se expresa como "cuatro veintenas").
Según los antropólogos, el origen del sistema decimal está en los diez dedos que tenemos los humanos en las manos, los cuales siempre nos han servido de base para contar.
El sistema decimal es un sistema de numeración posicional, por lo que el valor del dígito depende de su posición dentro del número. Así:
cdot 100 + 4 \cdot 10 + 7 \cdot 1 = 3 \cdot 10^2 + 4 \cdot 10^1 + 7 \cdot 10^0" shapes="Imagen_x0020_9" border="0" width="463" height="20">
Los números decimales se pueden representar en rectas numéricas.
El sistema decimal es un sistema de numeración en el que las cantidades se representan utilizando como base el número diez, por lo que se compone de diez cifras diferentes: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve (9). Este conjunto de símbolos se denomina números árabes, y es de origen indio.
Es el sistema de numeración usado habitualmente en todo el mundo (excepto ciertas culturas) y en todas las áreas que requieren de un sistema de numeración. Sin embargo hay ciertas técnicas, como por ejemplo en la informática, donde se utilizan sistemas de numeración adaptados al método de trabajo como el binario o el hexadecimal. También pueden existir en algunos idiomas vestigios del uso de otros sistemas de numeración, como el quinario, el duodecimal y el vigesimal. Por ejemplo, cuando se cuentan artículos por docenas, o cuando se emplean palabras especiales para designar ciertos números (en francés, por ejemplo, el número 80 se expresa como "cuatro veintenas").
Según los antropólogos, el origen del sistema decimal está en los diez dedos que tenemos los humanos en las manos, los cuales siempre nos han servido de base para contar.
El sistema decimal es un sistema de numeración posicional, por lo que el valor del dígito depende de su posición dentro del número. Así:
cdot 100 + 4 \cdot 10 + 7 \cdot 1 = 3 \cdot 10^2 + 4 \cdot 10^1 + 7 \cdot 10^0" shapes="Imagen_x0020_11" border="0" width="463" height="20">
Los números decimales se pueden representar en rectas numéricas.
Algunas fracciones muy simples, como 1/3, tienen infinitas cifras decimales. Por eso, algunos han propuesto la adopción del sistema duodecimal, en el que 1/3 tiene una representación más sencilla.
1/2 = 0,5
1/3 = 0,3333...
1/4 = 0,25
1/5 = 0,2
1/6 = 0,1666...
1/7 = 0,142857142857...
1/8 = 0,125
1/9 = 0,1111...
Tabla de multiplicar
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
BUSQUEDA DE NÚMEROS PRIMOS
- Los acabados en 2, 4, 6, 8 y 0 son múltiplos de 2
- Los acabados en 5 y 0 son múltiplos de 5
No hay comentarios:
Publicar un comentario